
Lightning-2: A High-Performance Display Subsystem for PC Clusters

Gordon Stoll∗ Matthew Eldridge† Dan Patterson∗ Art Webb∗ Steven Berman‡ Richard Levy‡

Chris Caywood∗ Milton Taveira∗ Stephen Hunt∗ Pat Hanrahan†

∗Intel Corporation †Stanford University ‡Cornell University

Abstract

Clusters of PCs are increasingly popular as cost-effective platforms
for supercomputer-class applications. Given recent performance
improvements in graphics accelerators, clusters are similarly attrac-
tive for demanding graphics applications. We describe the design
and implementation of Lightning-2, a display subsystem for such a
cluster. The system scales in both the number of rendering nodes
and the number of displays supported, and allows any pixel data
generated from any node to be dynamically mapped to any loca-
tion on any display. A number of image-compositing functions are
supported, including color-keying and depth-compositing. A distin-
guishing feature of the system is its platform independence: it con-
nects to graphics accelerators via an industry-standard digital video
port and requires no modifications to accelerator hardware or de-
vice drivers. As a result, rendering clusters that utilize Lightning-2
can be upgraded across multiple generations of graphics acceler-
ators with little effort. We demonstrate a renderer that achieves
106 Mtri/s on an 8-node cluster using Lightning-2 to perform sort-
last depth compositing.

CR Categories: I.3.1 [Computer Graphics]: Hardware
architecture—Parallel processing; I.3.2 [Computer Graphics]:
Graphics Systems—Distributed/network graphics; I.3.3 [Computer
Graphics]: Picture/Image Generation—Bitmap and framebuffer op-
erations; C.2.4 [Computer-communication Networks]: Distributed
Systems—Client/Server;

Keywords: Graphics Hardware, Graphics Systems, Parallel Com-
puting, Rendering Hardware, Rendering Systems

1 Introduction

Our goal in the design of Lightning-2 is to enable the display of
high-performance 3D graphics from clusters of PCs. The prototype
system we have developed is an interconnection fabric that connects
the video outputs of multiple graphics accelerators to the video in-
puts of multiple display devices. Any pixel data rendered on any
graphics accelerator can be routed in real-time to any location on

∗{gordon.stoll,dan.w.patterson,art.d.webb}@intel.com
∗{chris.caywood,milton.o.taveira,stephen.h.hunt}@intel.com
†{eldridge,hanrahan}@graphics.stanford.edu
‡{stb5,rdl6}@cornell.edu

any display. Three major requirements drove the design of the sys-
tem: scalability, host system independence, and performance.

The need for scalability in both the number of video inputs and
the number of video outputs was a direct result of our target appli-
cation requirements. The groups involved in the initial design use
PC clusters ranging from two machines under a desk to hundreds of
machines in a national laboratory. The range of the display systems
of interest is also large, from a single monitor to a display wall in-
stallation with dozens of projectors. These requirements obviated
any design that could not scale along both of these axes. For this
reason, the Lightning-2 system is built up from modules that can
be tiled in two dimensions. Each individual module supports up to
four video inputs and up to eight video outputs.

Our requirement for host system independence is a result of the
dynamics of the PC and graphics accelerator markets. It would not
be feasible to redesign and reimplement Lightning-2 on the design
cycle of commodity graphics accelerators. Instead, it is designed
independently from any specific accelerator and its compatibility
requirements are kept to a minimum. As a result, clusters built
using Lightning-2 can leverage the tremendous resources dedicated
to the design and implementation of mass-market PCs and accelera-
tors. In order to maintain system independence, Lightning-2 needs
to capture data rendered by a modern PC graphics accelerator in
a device-independent, standardized way. There are currently two
choices: data can be read into system memory via the graphics I/O
interface (AGP4x) or data can be captured as it is transmitted out
of the display interface (now feasible due to the development of the
industry-standard digital display interface, DVI). The first option
has significant performance drawbacks because pixel data must be
transmitted over the AGP and system memory buses, perhaps re-
peatedly. In contrast, the display interface has high and predictable
performance and is optimized for minimal interference with ongo-
ing rendering operations. Therefore, the Lightning-2 inputs connect
directly to the DVI digital video outputs of commodity graphics ac-
celerators.

The final requirement is performance. Even in its prototype
form, the system is intended to serve as a research platform for
the development of cluster-based interactive rendering libraries and
applications. In order to be useful in this regard, the performance
characteristics of the system must be good enough to support these
applications. Lightning-2 supports workstation-class resolutions,
refresh rates, update rates, and frame latencies, while making this
level of performance straightforward for a programmer to attain.

2 Previous Work

Image reassembly and composition from multiple sources is a well-
established area of parallel rendering architecture. One of the earli-
est such systems is the NASA II flight simulator, an image com-
position renderer based on multiple polygon “face” cards and a
priority-based visibility scheme [10]. The Hewlett-Packard Visual-
ize Ascend architecture [2] uses a custom network to flexibly com-
posite the results of multiple graphics accelerators. Sony’s GScube,
demonstrated at SIGGRAPH 2000, supports tiled and depth-based
image composition of the outputs of multiple Playstation2 graphics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

Graphics
Accel.

PC
Graphics

Accel.

PC
Graphics

Accel.

PC

Compositing
Chain

DVI outputs

Graphics
Accel.

PC L2L2

Graphics
Accel.

PC
Graphics

Accel.

PC
Graphics

Accel.

PC
Graphics

Accel.

PC L2L2

Graphics
Accel.

PC
Graphics

Accel.

PC
Graphics

Accel.

PC
Graphics

Accel.

PC L2L2

Rendering Nodes

Figure 1: A 3× 2 Lightning-2 matrix. A basic building block cas-
cades in two dimensions to support widely varying PC clusters and
display systems.

systems over a custom network.
One of the most ambitious image composition architectures is

the PixelFlow [9] depth-compositing system. PixelFlow is an entire
rendering system, with several custom chip designs. By contrast,
Lightning-2 is a system for combining imagery from commodity
rendering accelerators. The most similar element is the pipelined
linear compositing chain used in both systems. However, in Pix-
elFlow, the chain operates on a single tile of the output image at a
time and the final output is reassembled in a framebuffer for dis-
play. The Lightning-2 compositing chain operates in raster order
and at video rates; the results are sent directly out the video outputs
with no further buffering.

Lightning [4], the direct precursor to this work, and the Sepia
system [6] are more closely related to Lightning-2. Both sys-
tems serve as display subsystems for clusters. Unlike Lightning-2,
neither system includes support for high-performance transfer of
frames from graphics accelerators. Instead, it is necessary to use
software-based rendering or to copy the framebuffer out of the
accelerator into system memory and then back out into the com-
positing system. Either of these options limits the resolutions and
frame rates that can be achieved. The MetaBuffer design [1], like
Lightning-2, is intended to connect commodity graphics accelera-
tors by capturing frames from the DVI interface. The MetaBuffer
architecture includes novel multi-resolution capabilities that have
not been explored in Lightning-2.

Molnar et al. define a taxonomy of graphics architectures based
on where in the graphics pipeline they sort the input object paral-
lelism to the output image parallelism [8]. Under their taxonomy,
Lightning-2 can function as a part of a sort-first or sort-middle sys-
tem, in which case it reassembles the tiled framebuffer for display,
or it can function as a sort-last system, in which case it implements
the depth-composition of the multiple framebuffers into a final out-
put.

3 Architecture

A block diagram of an example Lightning-2 rendering cluster is
shown in figure 1. The cluster consists of 12 PCs with graphics ac-
celerators, 6 Lightning-2 modules arranged in a 3×2 matrix, and 5
displays, 1 driven by the first column of Lightning-2 modules and
the other 4 displays driven by the second column. Digital video

DVI from PC (or prev. column)

back channel to PC (RS-232)

DVI

Input
Unit

Memory
Controller

A
buffer

B
buffer

Compositing
Unit

to next slice

compositing
chain, from

previous sliceto next column
for cascading

Figure 2: One “slice” of Lightning-2. A slice processes the output of
a single rendering node.

from the graphics accelerators is captured by the Lightning-2 mod-
ules in the first column, which in turn repeat the video signal to the
second column. Within each column, data from each of the PCs are
combined via a linear compositing chain to produce the final output
video. The chain is pipelined and constructed with point-to-point
communication links, providing effectively unlimited scalability in
this dimension.

A single Lightning-2 module has four DVI inputs, four DVI re-
peaters, and eight DVI outputs. In addition, there are communi-
cation channels back to the rendering nodes for use in the frame
transfer protocol, described in section 3.3.2, and a control port for
programming and configuration. In the prototype, the program-
ming and configuration port is a JTAG hardware access port, and
the back-channel to the PC is an RS-232 serial connection. The
components necessary for processing the four DVI inputs are pack-
aged together to minimize the per-board overhead of the composit-
ing chain and video outputs; however, each input is essentially an
independent slice of the board.

Figure 2 shows the components that comprise a single input
slice. The input unit captures video from a single graphics acceler-
ator via a digital interface, interprets control information embedded
in the video, and writes pixel data to the framebuffer memory con-
troller accordingly. The input unit repeats its DVI input to drive
subsequent Lightning-2 columns. The compositing unit reads the
slice’s framebuffer and composites it with incoming framebuffer
information from the previous slice, passing the composited result
to the next slice. The framebuffer is double-buffered, allowing one
frame to be stored while another is composited together with frames
captured by other input inputs.

There are three important advantages to combining the multiple
inputs via a pipeline of image compositing units and to cascading
the input DVI signals across multiple Lightning-2 columns. First,
this makes Lightning-2 a full crossbar router: each rendering node
can composite its entire framebuffer contents into the output im-
age and can do so with no layout restrictions. Second, it allows for
powerful compositing operations beyond simple screen tiling, such
as depth compositing. Third, this approach supports arbitrary scal-
ability in the number of inputs and outputs while being relatively
straightforward to design and implement. The disadvantage of this
approach is that the cost of a full crossbar is proportional to the
product of the number of inputs and the number of outputs.

The following sections describe the design and operation of the
compositing chain, the memory system, and the input processing
unit.

3.1 Compositing Chain

A pipeline of compositing units combines the pixel data from the
rendering nodes to produce output video. A number of compositing
operations are implemented in the prototype and are described in
section 4. A single chain of Lightning-2 modules supports up to

Composite

Register

Input 1

0 1 7...

local contribution for
display 1

Composite

Register

Input 0

8 9 15...

local contribution for
display 0

Composite

Register

Input 2

0 1 7...

local contribution for
display 0

0 1 7...

background + input 0,
display 1

background color

background + input 0 +
input 1, display 0

8 9 15...

0 1 7...

Background Input 0 Input 2

Unspecified by the rendering node

Pixel Legend:

Input 1

compositing chain

compositing chain

DVI Out 1DVI Out 0

Figure 3: Snapshot of the pipelined compositing chain in operation.
The background color pixels are injected at the top of the chain and
are overwritten by data from the rendering nodes that are targeted at
the same output pixel locations. The pixel data coming from a render-
ing node (the local contribution for a particular display) are compos-
ited via a programmable compositing operator with pixel data from
rendering nodes earlier in the chain. Each compositing unit operates
on 8 pixels at a time. The compositing chain is pipelined, so at any
point in time many groups of pixels are in flight. Pixels destined for
different displays are time-multiplexed on the chain. In this example,
Lightning-2 is driving two displays and the compositing logic imple-
ments a simple priority scheme, in which valid pixels from the local
host override the incoming pixels on the compositing chain.

533 Mpix/s of output bandwidth, enough to support three 1600×
1200 workstation-class displays or eight 1024×768 projectors. For
scalability beyond this point in the number of outputs, up to 15
chains can be cascaded together via the repeated DVI inputs of each
node.

Pixel data for each output frame is shifted down the chain in
raster order. At each compositing unit, the contributions of the
associated rendering node are read from the Lightning-2 display
buffer in raster order and composited into the output. Pixel data
for different displays are time-multiplexed on the chain on a clock-
by-clock basis. Each pixel is 32-bits and consists of a 24-bit RGB

color and an 8-bit opcode that can be used to control compositing
operations. The chain is eight pixels wide (256 bits) and runs at a
maximum clock rate of 66MHz. The time-multiplexed pixel data
are demultiplexed at the bottom of the chain to produce up to eight
DVI output signals. Note that there is no buffering of the video
data either within or at the bottom of the chain; the chain operates
in output-space raster order and at the output video clock rate and
thus can produce DVI output signals directly. An example of the
chain in operation is shown in figure 3.

3.2 Memory System

The frames of pixel data rendered by the PCs arrive in input-space
raster order, that is, the rendering node’s framebuffer raster order.
The compositing units operate on pixel data in output-space raster
order. There are two basic approaches to reorganizing the pixel data
between the input-space order and the output-space order. Pixel
data can be reorganized before being stored in the framebuffer using
a “forward” map (from input locations to output locations), or it can
be reorganized as it is read out of the framebuffer using a “reverse”
map (from output locations to input locations).

The demands on the framebuffer memory system differ signif-
icantly in these two mapping approaches. In a forward-mapping
scheme, the input (draw) side accesses are irregular while the output
(display) side accesses are perfectly regular. In a reverse-mapping
scheme, the opposite is true. Given the characteristics of DRAM
memories, the irregularity magnifies the input-side bandwidth de-
mands in a forward-mapping scheme and the output-side demands
in a reverse-mapping scheme. Additionally, the capacity required
for the two approaches differs. The forward mapping approach re-
quires storage per slice proportional to the size of the output space,
while the reverse mapping approach requires storage proportional
to the size of the input space. However, a reverse mapping frame-
buffer requires an additional data structure to allow the compositing
unit to access pixel data in output space raster order. Such a struc-
ture, while buildable, complicates both the input unit and the com-
positing unit. Consequently, we have chosen a forward mapping
(output space) framebuffer.

The pixel data must be double-buffered to allow for the simulta-
neous display of one frame of data while receiving the next frame of
data. To address the high bandwidth requirements of simultaneous
read and write access to the memory at video rates, we partition the
memory into two physical banks corresponding to the two logical
buffers. At its peak, DVI can drive the input with 165 Mpix/s. Un-
der a forward-mapping scheme, the write access pattern of the in-
put data to the framebuffer can consist of small, irregular writes that
suffer from poor memory efficiency. In order to support the full DVI
input bandwidth even in this case, we have constructed each bank of
the framebuffer with 533 Mpix/s of memory bandwidth (2.1 GB/s).
Because the output-space accesses are completely regular, and thus
have excellent memory efficiency, the compositing unit has the full
533 Mpix/s of read bandwidth available. This bandwidth, as well
as the total framebuffer memory, can be partitioned among up to
8 displays. For example, a single Lightning-2 chain can support 8
1024×768 displays or 3 1600×1200 displays.

3.3 Input Processing

There are two device-independent, standardized ways to capture
data rendered by a modern PC graphics accelerator. Either data can
be read into system memory via the graphics I/O interface, gen-
erally AGP4x, or data can be captured as it is transmitted out the
display port. The first option, data readback, has significant perfor-
mance drawbacks. Although the theoretical peak for such an op-
eration over an AGP4x port is 88 Mpix/s, the best performance we
have been able to achieve is 36.7 Mpix/s. Moreover, using readback

A/B buffer
(1 bit)

Width
(11 bits)

Opcode
(8 bits)

Column #
(4 bits)

Parity
(1 bit)

Address
(23 bits)

Output Display SpaceInput From Rendering Nodes

Figure 4: Mapping of pixel data from input space to output space
using embedded strip headers. The images at the left are the contri-
butions of two rendering nodes out of four to the output image on
the right. The barely visible light lines in the final image indicate the
tiling and are not present in the output. Two-pixel-wide strip head-
ers are drawn into the framebuffers of the rendering nodes to pro-
vide Lightning-2 with mapping information. Each header controls
the mapping of a one-pixel-high strip of arbitrary width. In addition
to the width, the header specifies the target buffer (A/B), the target
address in that buffer, the target column within the Lightning-2 ma-
trix, an 8-bit “opcode” for controlling compositing operations, and a
parity bit for detection of bit errors in the header itself.

directly impacts rendering performance, as it occupies the interface
to the graphics accelerator.

Until recently, capturing pixel data from the display port was
untenable due to the analog nature of standard display inter-
faces. This hurdle has been removed by the development of an
industry-standard digital display port: the Digital Visual Interface,
or DVI [5]. Currently available DVI interfaces support a pixel
clock rate of 165 MHz, transferring active video data at up to
150 Mpix/s, depending on the video blanking intervals specified.
A dual-channel version with twice this bandwidth is expected to be
available in the near future. In contrast to the pixel readback path,
the display refresh path in an accelerator has high and predictable
performance and is optimized for minimal interference with ongo-
ing rendering operations.

For these reasons, Lightning-2 captures display data via the DVI
interface. Given this interface, we must now address two further
issues. First, the mapping of pixel data from input space to out-
put space must be specified. Second, the rendering nodes and
Lightning-2 must be able to coordinate the transfer of frames.

3.3.1 Pixel Mapping

The forward mapping from input locations to output locations is
specified by the user application or by the underlying rendering li-
brary. Mapping information is specified by drawing a 48-bit (two-
pixel) wide “strip header” directly into two adjacent pixels in the
framebuffer. These two pixels specify the mapping information for
a run of pixels that immediately follow on the same scanline. The
first two pixels on a scanline always contain a strip header. A width
field in the header specifies the number of pixels being mapped
by the header, and implicitly, the location of the next header on
the scanline. Figure 4 shows this technique in use for assembly of
screen tiles in an image-space subdivision rendering of a dragon.

This method allows the mapping of input locations to output
locations to be arbitrarily fine-grained and completely dynamic.
There is no excessive overhead for applications that do not require
fine granularity, and synchronization between mapping data and
pixel data is automatic as they are transferred on the same channel.
This method also distributes the overhead of preparing and trans-
mitting the mapping information across all of the rendering nodes.

This is especially important for image-space subdivision, because
the granularity of mapping decreases (and thus the overhead in-
creases) quickly as the number of rendering nodes increases.

3.3.2 Frame Transfer Protocol

The rendering nodes transfer frames to Lightning-2 by displaying
them on their DVI outputs. Each Lightning-2 input must capture a
complete frame from its corresponding rendering node before the
node swaps and displays the next frame. Until every input unit has
received a complete frame, Lightning-2 cannot swap and start ac-
cepting the next frame from the rendering nodes. Thus, the ear-
liest Lightning-2 will swap is one frame time after the last ren-
dering node swaps. Furthermore, Lightning-2 is always receiving
pixel data for the same frame from all the inputs. Consequently,
Lightning-2’s maximum update rate is limited by the time to trans-
fer a frame to Lightning-2 plus the difference between when the
first rendering node and the last rendering node swap.

This limit would not be a problem if all rendering nodes swapped
simultaneously; however, it is not possible to synchronize the video
refresh cycles of most commodity accelerators. As a result, there
may be a delay of up to one refresh cycle between the swaps of
different rendering nodes, even for a perfectly balanced renderer.
Such a delay will limit Lightning’s maximum update rate to half the
refresh rate. We solve this problem by disabling the synchroniza-
tion of buffer swapping on the accelerators to their vertical blank-
ing intervals, instead allowing swapping to occur during horizontal
blanking intervals.

Swapping during horizontal rather than vertical blanking is
widely supported by commodity graphics accelerators. This al-
lows buffer swapping to occur without significant delay, but with
two repercussions. First, in order for this change to be useful,
Lightning-2 must detect when the buffer swap occurs within the
frame. This is done by embedding an extra bit in the strip headers
that is toggled on alternately rendered frames. Second, Lightning-2
must be able to accept the scanlines of a frame out of order. The
structure of the mapping information in Lightning-2 makes this rel-
atively straightforward since each strip header only describes sub-
sequent pixels on the same scanline – there are no inter-scanline
decoding dependencies.

Lightning-2 is pipelined in its operation with the rendering
nodes, so while it is accepting frame n from the rendering nodes,
they may be rendering frame n + 1. In order to insure that a
Lightning-2 input has received all of frame n from its attached ren-
dering node before the node swaps and displays frame n + 1, we
provide a per-input back-channel notification port that tells the at-
tached rendering node when the frame it is currently displaying has
been completely received. The node needs to wait for this noti-
fication only when it is ready to swap, not before, so in general,
the transmission of the notification from Lightning-2 is overlapped
with the application’s rendering of the next frame.

The operation of a typical parallel rendering application running
with Lightning-2 support is shown in figure 5. Each rendering node,
shown on the left, first synchronizes with all of the other rendering
nodes and determines viewing parameters for the next frame to be
drawn. Each node then renders its portion of the scene to its lo-
cal framebuffer and draws the strip headers that will route its pix-
els to the appropriate places on the output displays. Before swap-
ping, each node must wait for notification from its corresponding
Lightning-2 input unit that the previous frame has been completely
received. Each rendering node then swaps and waits for the other
rendering nodes to complete the frame.

Each Lightning-2 input unit follows a similar protocol. Starting
at the rightmost state in the protocol diagram, each input unit first
waits for the next frame to arrive from its attached rendering node,
as recognized by the A/B bit in the strip headers. The input unit

Ready to
swap, wait for

Lightning-2

Render
locally

Draw strip
headers

Swap local
buffer, toggle

A/B frame

Ready to render,
wait for other

rendering nodes

Ready to swap,
wait for other

input units

Receive
frame

Wait for
next

frame

Swap output
buffer, toggle

A/B frame

Notify
application

Rendering
Node

Lightning-2
Input Unit

Figure 5: Operation of a typical application driving Lightning-2. The application communicates its progress around the state diagram to Lightning-2
by toggling the A/B bits of its strip headers on successive cycles. Similarly, Lightning-2 indicates the completion of an input cycle by signaling each
rendering node over its back-channel. Both the application and Lightning-2 also require internal barriers to coordinate their internal parallelism.

then receives an entire frame of data, and at the end of the frame
notifies the rendering node over the back-channel that its frame of
data has been received. Each input unit then waits for each other
input unit to have received a full frame of data, at which point they
all swap simultaneously.1 The input unit then resumes waiting for
the next frame from its attached rendering node.

The Lightning-2 communication protocol has two performance
implications. First, applications are restricted to run slightly slower
than the local framebuffer refresh rate, because the back-channel
notification is not sent until after the entire frame is received. To
avoid impacting the final Lightning-2 output frame rate, the inputs
may be run at a slightly higher refresh rate to provide adequate mar-
gin for the per-frame back-channel notification. Section 5.1 quan-
tifies this overhead. Second, the use of Lightning-2 will always
introduce an additional frame of latency in the display system, be-
cause an entire frame must be received from each rendering node
(requiring a frame time at the application node refresh rate) before
the inputs can swap. This latency can be reduced by increasing the
application’s local framebuffer refresh rate.2

4 Image Composition

Image composition encompasses a broad range of possible opera-
tions, from simple assembly of disjoint screen tiles to the combined
transparency and depth operations described by Duff [3]. For the
prototype implementation of Lightning-2, three basic operations
were chosen as necessary for usability with interactive applica-
tions: simple screen-tile assembly, priority-based window layering,
and color-keying. Additionally, a depth compositing function was
added to allow experimentation with sort-last rendering algorithms.

4.1 Basic Operations

One of the most straightforward uses of Lightning-2 is to assemble
tiled images that have been rendered on multiple nodes. In this case,
each pixel in the output image is owned by a single rendering node,
and the compositing function emits all pixels specified by its input
slice and only passes through the pixels of the previous slices when
its input has not specified a pixel for an output location.

1Our current Lightning-2 implementation waits for a vertical blanking
interval before swapping, although this could be modified to swap during
the horizontal blanking interval.

2There is additional latency introduced by the pipelining of the com-
positing chain. Each pipeline register in the compositing unit introduces 8
pixel clocks of latency per input slice. This latency is insignificant except in
extremely large configurations.

Priority-based window layering allows overlapping windows
drawn on different rendering nodes to correctly occlude each other,
independent of the order of the nodes in the compositing chain.
Lightning-2 implements priority-based window layering by encod-
ing pixel data priority in the opcode field of the strip headers. This
8-bit opcode field is carried along with all of the RGB pixel data
associated with that strip header.

Some applications require detailed, dynamic mapping geometry
that can be difficult to express using the two-pixel strip headers.
One example is the composition of dynamic GUI elements, such
as cursors and menus, that are rendered on one node with content
rendered on another node (or nodes). Using strip headers in this
case would require extensive modification of the GUI library. For
this reason, Lightning-2 supports color-keying, allowing pixels that
match a programmable key color to be be ignored on a per input
basis. In the GUI example, the content area of a window can be
filled with a key color to create a “hole” into which content rendered
on other nodes can be composited. Cursors, menus, and other GUI
elements will properly occlude the remotely rendered content as
long as they do not contain the key color.

4.2 Depth Compositing

Depth compositing merges color images into a single output im-
age based on comparisons of corresponding depth images. Unlike
the compositing operations previously described, depth composit-
ing requires two values per pixel: color and depth.

The first difficulty in implementing any compositing operation
that utilizes data other than simple RGB color is the potential dif-
ficulty in getting such data out of the DVI output port. For our
experiments with depth-compositing, we currently use a read of the
accelerator’s depth buffer into system memory followed by a write
from system memory back to the color buffer to achieve the re-
quired copy of 24 bits of depth information into the 24 bits of the
RGB framebuffer. It would be preferable to perform a direct copy
of the depth buffer to the color buffer, or even directly refresh the
depth buffer out the DVI port; however, we have so far been unable
to find such functionality in a mass-market accelerator.

The second difficulty is that the depth value for each pixel must
be available at the compositing unit at the same time as the corre-
sponding color value. We take advantage of Lightning-2’s flexible
pixel mapping to place the depth image on display 0, and the cor-
responding color image on display 1. Due to the time-multiplexing
of the output display video on the compositing chain, the depth and
color information for any given pixel will arrive at a given com-
positing unit in quick succession. The compositing unit compares
the display 0 (depth) values and retains the result to choose between

(a)

(b)

(c)

Figure 6: Depth compositing with four rendering nodes. Each node
renders one quarter of the model into the upper-left region of its
framebuffer. This leaves room around the edges for the depth infor-
mation, which is read out of the depth buffer and written back into
the color buffer in pieces to the right and bottom of the color infor-
mation. Image (a) shows the contribution of one rendering node. Im-
age (b) shows the final color image as reconstructed by Lightning-2,
color-coded by rendering node. Image (c) shows the final seamless
rendering.

the display 1 (color) values. Figure 6 shows images from the oper-
ation of this technique with four rendering nodes.

5 Results

We have constructed four prototype Lightning-2 boards. A com-
pletely populated board, shown in figure 7, consists of 23 Xilinx
FPGAs, 512MB of SDRAM, and a small number of support chips.
We expect that the architecture could be implemented relatively in-
expensively, with the cost probably dominated by memory. The
512MB of memory consists of 128MB of memory per input slice,
which is comparable in size and cost to the memory already in-
cluded in the graphics accelerator.

The cluster used in our experiments consists of nine 1.5GHz
Pentium-4 processor based PCs. Eight PCs are connected to a
Lightning-2 matrix. The ninth is used as a “master” node by ap-
plications that are organized in a master/slave fashion. A Myrinet
network using PCI-64/66 network adapters connects all nine PCs,
allowing the master to synchronize the operation of the slaves and
distribute control information to the applications. Each workstation
is equipped with 256 MB of RDRAM and an NVIDIA GeForce2
Ultra / Quadro2 Pro AGP4x graphics accelerator.

5.1 Frame Transfer Protocol Performance

The frame transfer protocol of Lightning-2 involves a number of
communication steps that might impose overhead that could reduce
rendering performance, reduce the frame update rate, or increase
the frame update latency. Our goal for the protocol is to achieve a
consistent 60Hz update to a 60Hz output display. As the transfer
of a frame from the rendering node into Lightning-2 necessarily
includes a complete display refresh cycle on the rendering node,
the refresh cycle must be set faster than 60Hz in order to allow time
for the rest of the operations involved in the frame transfer.

There are two possible sources of overhead in the frame trans-
fer protocol that are on the critical path for achieving a 60Hz up-
date rate. These operations cannot be overlapped within the re-
quired rendering node refresh cycle time and must instead be com-
pleted within the small gap between that time and the 16.67ms out-
put display refresh time at 60Hz. The first is the communication
from Lightning-2 to the PC via the RS-232 back-channel when a
frame transfer has completed. The second is the internal synchro-
nization that Lightning-2 must perform before performing an inter-

Input 0

Input 1

Input 2

Input 3

Compositing
Chain Out

DVI Ouputs

Compositing
Chain In

Figure 7: Lightning-2 module. The 4 inputs are the pairs of white
connectors down the left-hand edge of the board. The upper connector
of each pair is the DVI input and the lower connector is the repeated
output. Visible above each pair is the serial port for the back-channel.
Each input slice stretches out horizontally from its associated connec-
tors and consists of an input FPGA and 4 FPGAs that map the input’s
framebuffer and implement the compositing logic. The 8 DVI out-
puts are distributed across the bottom of the board. The 3 wide white
connectors staggered at the top of the board and in a column at the
bottom of the board carry the compositing chain.

nal buffer swap. Due to the relative speeds of the RS-232 back-
channel and Lightning-2’s internal communication paths, the back-
channel communication path dominates for any but extremely large
Lightning-2 configurations. The raw communication path from the
PC over DVI to the Lightning-2 input unit and back to the PC
over RS-232 was measured in isolation during the design phase of
Lightning-2 and found to be under 0.1ms. The worst-case time that
Lightning-2 must wait for a horizontal blanking interval is on the
order of 0.16ms. Given these measurements, even a slight increase
in the rendering node refresh rate should allow for the necessary op-
erations. We are currently unable to set our rendering node graphics
accelerators to arbitrary DVI refresh rates, so we chose 70Hz, the
first available refresh rate faster than 60Hz. This provides a gap of
approximately 2.3ms in which to perform the necessary operations.
Note that the time available to the application for rendering and
other application tasks remains approximately 16.67ms; application
processing is fully overlapped with the frame transfer operation so
that the 2.3ms is not lost. Operating the graphics accelerators at this
higher refresh rate does impose a small extra bandwidth burden on
the memory system of the graphics accelerator.

Using the above configuration, we measured a minimal
Lightning-2 application that performs no rendering work, but only
synchronizes with Lightning-2 and swaps its local framebuffer re-
peatedly. The application meets 60Hz timing greater than 90% of

Buddha Dragon
Vertices 543,652 4,376,450
Triangles 1,155,523 9,263,100
Strips 254,955 2,033,100
Average Strip Length 6.53 6.56
Serial Frames/s 13.0 1.69
Serial Mtri/s 15.2 15.7

Figure 8: The Buddha and Dragon models.

the time. This is the same result observed for a standalone renderer
that does not use Lightning-2. We have verified that the majority of
the missed frames correspond to interference by the operating sys-
tem and other background processes. The results are identical for
synchronized operation across our cluster of 8 rendering nodes.

5.2 Depth Compositing Performance

We have implemented an interactive model viewer that utilizes
the depth compositing technique described in section 4.2. This
renderer is intended for the demonstration and measurement of
Lightning-2’s capabilities. Issues in distributing and maintaining
scene data and in managing distributed texture data are not ad-
dressed. The WireGL image-subdivision renderer described in sec-
tion 5.3 is more fully developed and addresses more of these issues.

Our two test models, Buddha and Dragon, are shown in figure 8.
Both models are from the Stanford 3D Scanning Repository. The
models consist of 1.16 million and 9.26 million stripped triangles
respectively, and both include per-vertex normals. In order to exper-
iment with a large model that could utilize the full rendering power
of our 8-node cluster while still comparing our performance to that
of the uniprocessor case, Dragon uses instancing to draw the same
model 10 times. This increases our geometry work 10-fold while
leaving our memory footprint unchanged so that we can still mea-
sure the renderer’s serial performance. In all of our experiments,
the strips are assigned in round-robin order to the rendering nodes
at startup time and each node builds a display list for its subset of
the model. The color and depth information is organized as shown
in figure 6. For these experiments, the rendering node framebuffer
is 1280×1024 and the output image size is 800×600.

The speedup of our parallel renderer on Dragon is shown in fig-
ure 9. Dragon has a 6.8x speedup at 8 rendering nodes, achieving a
framerate of 11.4Hz and a triangle rate of 106 Mtri/s. The speedup
is computed relative to the serial rendering time. In each case, in-
cluding the one rendering node case, the parallel renderer incurs the
overhead of master-slave communication, the frame transfer proto-
col, and the copy of the depth buffer to the color buffer.

We investigate the overhead of this copy operation by render-
ing Buddha, which has significantly less geometry than Dragon
and will more readily expose the Lightning-2 overhead. Figure 10a
shows the proportion of time spent copying the depth buffer, ren-
dering, and synchronizing with Lightning-2 as a function of the
number of rendering nodes for Buddha. The execution time shows
continual improvements to 8 rendering nodes, although the large
fixed cost of the depth copy limits the achieved performance. For
the 800× 600 window used in our experiments, this copy opera-

0 2 4 6 8

rendering nodes

0

25

50

75

100

125

M
tr

i/s Dragon
ideal

Figure 9: Speedup for Dragon, as a function of the number of ren-
dering nodes. The speedup is relative to the serial execution time in
figure 8.

0

20

40

60

80

100

m
ill

is
ec

on
ds

1 2 3 4 5 6 7 8
rendering nodes
(a) Buddha

0

20

40

60

80

100

1 2 3 4 5 6 7 8
rendering nodes

sync
render
z-copy

(b) Buddha, no z-copy

Figure 10: Frame time for Buddha, as a function of the number of
rendering nodes. The frame time is partitioned into “z-copy,” the
amount of time spent copying the depth buffer to the color buffer,
“render,” the amount of time spent in the application code, and “sync,”
the amount of time spent waiting for back-channel notification from
Lightning-2.

tion takes approximately 17ms. To examine the renderer’s perfor-
mance without this overhead, we measured Buddha with the depth
copy disabled. The output images are incorrect in this case, but this
does not affect the performance of Lightning-2. The execution time
without the depth copy, shown in figure 10b, shows performance
improvements up to 5 rendering nodes. At this point, Buddha is ren-
dering at 60Hz and further decreases in the rendering time will have
no impact since the rendering nodes cannot swap more frequently
than the Lightning-2 output rate. This shows up in the graph as an
increase in time spent waiting for back-channel notification from
Lightning-2.

5.3 Image-Space Subdivision Performance

The experiments described here have focused on using Lightning-2
for sort-last rendering using depth-compositing. Humphreys et al.
describe a sort-first tiled rendering system called “WireGL” [7] that
uses Lightning-2 to assemble the output image. WireGL partitions
the work of rendering a frame in screen space by dividing the screen
into a number of tiles and assigning the tiles to rendering nodes.
Lightning-2 allows WireGL to perform this screen-space subdivi-
sion of work and then, at no cost, reassemble the outputs of the ren-
dering nodes into a single image. Using Lightning-2 in this fashion,
WireGL can operate at over 70 million vertices per second with 16
client nodes submitting commands and 16 server nodes rendering
them.

WireGL can support some functionality that would be difficult to
support with a depth-compositing renderer, such as alpha-blended
transparency and other operations which depend on primitive sub-

mission order. However, depth compositing has the significant ad-
vantage that each node of a parallel application can interface di-
rectly with a graphics accelerator rather than performing the com-
paratively expensive operation of transmitting commands over a
network to the appropriate rendering node. The WireGL authors
cite rendering rates of over 21 million vertices per second on the
local host as compared to only 7.5 million over the network to a
remote rendering node.

Screen-partitioning approaches can support very large output
display spaces. We have used the WireGL/Lightning-2 system to
render 3D imagery to multiple workstation displays, large multi-
projector display walls, and next-generation LCD panels such as
the IBM 9.2 megapixel “Bertha” prototype [12]. As described
previously, this type of application is difficult when using depth-
compositing since each application framebuffer must match the res-
olution of the output display.

6 Discussion

Lightning-2 is designed as a digital video crossbar: it allows any
rendering node to place any pixel at any location on any output dis-
play. A crossbar design is resource-intensive since its cost is pro-
portional to the product of the number of inputs and the number of
outputs. This is most noticeable in the memory system because the
memory capacity and bandwidth are increasingly sparsely utilized
as a Lightning-2 system is scaled up. The advantage of the crossbar
design is that it provides high and predictable performance across
all possible usage models, an important property for a research plat-
form. When the usage models and performance tradeoffs are better
understood in this design space, a more efficient design could be
possible.

Lightning-2 receives input from the rendering nodes via the digi-
tal display interface, DVI. Using DVI has the advantage of high and
predictable bandwidth, but the disadvantage of limiting the com-
munication to the color raster information DVI is designed to trans-
port. Because Lightning-2 requires more general communication
with the rendering nodes, we chose to create our own packet-based
protocol by embedding two-pixel headers within the color informa-
tion, rather than introducing an additional communication channel.
However, this embedding can complicate application and graph-
ics library software. In order to support depth-compositing, we
also transport non-RGB data in the form of depth values. Unfor-
tunately, current graphics hardware does not allow for direct copies
from the depth buffer into the color buffer. This impacts the perfor-
mance of depth-compositing on Lightning-2 severely, as described
in section 5.2. Fortunately, digital display interfaces are beginning
to move towards more general functionality. Packet-based display
interfaces have been implemented in systems such as PV Link [11]
and are being discussed for DVI 2.0. These interfaces include sup-
port for selective (non-raster) refresh and more general datatypes. It
is likely that future designs in this space could leverage this greater
generality.

We have not implemented anti-aliasing support in the current
Lightning-2 system. In an image-space subdivision renderer such
as WireGL, anti-aliasing could be implemented on the current
Lightning-2 hardware and could leverage anti-aliasing support in
the graphics accelerators. Anti-aliasing in a depth-compositing
renderer is more difficult. Supersampling, the approach used in
PixelFlow, is the most straightforward approach, but greatly in-
creases the memory system and compositing chain bandwidth re-
quirements. This approach could be implemented in Lightning-2
with minor changes to the FPGA programming; the bandwidth of
the memory system and compositing chain are sufficient to support
a single 1024 × 768 depth-composited output display with 4x su-
persampling.

7 Conclusion

We have described Lightning-2, a hardware image composition ar-
chitecture for clusters of graphics-accelerated PCs. The key aspects
of the design are its scalability, its independence from any specific
graphics accelerator, and its high performance in terms of display
resolution, refresh rate, update rate, and update latency. Scalability
makes it possible to achieve much higher performance than is pos-
sible with a single PC, and device independence makes it possible
to maintain this advantage over multiple generations of graphics ac-
celerators. The prototype implementation has been demonstrated to
achieve 60Hz update rates to 60Hz output displays from our cluster
of eight PCs. We have demonstrated performance with 8 rendering
nodes of up to 106 Mtri/s. The system is flexible enough to sup-
port both this sort-last rendering approach and WireGL, a sort-first
parallel implementation of OpenGL.

Acknowledgements

Kai Li made significant contributions to the early stages of the de-
sign and advocated including support for multiple displays. John
Owens helped design and build Lightning, Lightning-2’s predeces-
sor. Ian Buck integrated Lightning-2 support into WireGL. The
Dragon and Buddha models are from the Stanford 3D Scanning
Repository. Diane Tang provided helpful feedback on the organiza-
tion and writing. The reviewers made numerous helpful comments
that improved this work. This work was supported at Stanford by
the Fannie and John Hertz Foundation, Intel Corporation, and the
DARPA DIS program (contract DABT63-95-C-0085-P00006).

References
[1] William Blank, Chandrajit Bajaj, Donald Fussel, and Xiaoyu Zhang.

The MetaBuffer: A Scalable Multiresolution Multidisplay 3-D Graph-
ics System Using Commodity Rendering Engines. Technical Report
TR2000-16, Department of Computer Science, University of Texas at
Austin, 2000.

[2] Ross Cunniff. Visualize fx Graphics Scalable Architecture. In Pro-
ceedings of Eurographics Hardware/SIGGRAPH Hot3D, pages 29–
38, August 2000.

[3] Tom Duff. Compositing 3-D Rendered Images. Computer Graphics
(Proceedings of SIGGRAPH 85), pages 41–44, July 1985.

[4] Matthew Eldridge and John D. Owens. Lightning: A Scalable, Dis-
tributed, Virtual Framebuffer. Technical Report (Unpublished), De-
partment of Electrical Engineering, Stanford University, 1998.

[5] Digital Display Working Group. Digital Visual Interface 1.0 Specifi-
cation, 1999. http://www.ddwg.org.

[6] Alan Heirich and Laurent Moll. Scalable Distributed Visualization
Using Off-the-Shelf Components. Symposium on Parallel Visualiza-
tion and Graphics, pages 55–60, October 1999.

[7] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll,
Matthew Everett, and Pat Hanrahan. WireGL: A Scalable Graphics
System for Clusters. Computer Graphics (Proceedings of SIGGRAPH
01), August 2001.

[8] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A
Sorting Classification of Parallel Rendering. IEEE Computer Graph-
ics and Applications, pages 23–32, July 1994.

[9] Steven Molnar, John Eyles, and John Poulton. PixelFlow: High-speed
Rendering Using Image Composition. Computer Graphics (Proceed-
ings of SIGGRAPH 92), pages 231–240, July 1992.

[10] Steven Molnar and Henry Fuchs. Advanced Raster Graphics Archi-
tecture, chapter 18, pages 899–900. Addison–Wesley, second edition,
1990.

[11] K. R. Schleupen. Driving and Interface Technology for High Resolu-
tion AM-LCDs. Seventh International Display Workshops (Proceed-
ings of IDW 00), November 2000.

[12] T. Ueki. Requirements for Large Size and High Resolution TFT-
LCDs. Proceedings of the International Display Manufacturing Con-
ference, 2000.

